論文題目要旨

学位申請者:井上梓

論文題目: Study of the ${}^{7}\text{Be}(d, p){}^{8}\text{Be}$ Reaction and its Impact on the Cosmological Lithium Problem

論文要旨:

The aim of the thesis is to potentially resolve the Cosmological Lithium Problem (CLP) with the cross section measurement of the ${}^{7}\text{Be}(d, p){}^{8}\text{Be}$ reaction. The CLP is a well-known unsolved issue in astrophysics that is an overestimation of the primordial ⁷Li abundance in the standard Big Bang nucleosynthesis (BBN) model compared to astrophysical observations. The majority of ⁷Li nuclei were produced by the electron capture decay ($t_{1/2} = 53.22$ days = 4.5×10^{6} seconds) of ⁷Be. ⁷Be nuclei were considered to be produced in several hundred seconds during the BBN, resulting in a timescale difference of 10^{4} between the ⁷Li and ⁷Be productions.

One of the possible scenarios to resolve the CLP is that ⁷Be nuclei were more destroyed during the BBN with a lesser abundance of ⁷Li than the BBN model prediction. The ⁷Be $(d, p)^8$ Be reaction is focused in this thesis following a theoretical suggestion that the reaction played a significant role in the destruction of ⁷Be nuclei during the BBN [1]. The measurement of the absolute cross section in the Big Bang energy region ($E_{c.m.} = 0.1 - 0.4$ MeV) was crucial for understanding the nuclear reactions in the primordial universe.

We produced a radioactive ⁷Be target and measured the ⁷Be $(d, p)^8$ Be reaction cross section in the BBN energy region at the tandem facility of Kobe University. A 2.36 MeV proton beam irradiated a natural Li target with a thickness of 30 μ m, transmuting ⁷Li nuclei to ⁷Be through the ⁷Li $(p, n)^7$ Be reaction. 2.82 × 10¹³ ⁷Be nuclei were produced in the Li host target by two days of the proton irradiation. Following the target production, a deuteron beam was accelerated to energies of 1.6 and 0.6 MeV to measure the ⁷Be $(d, p)^8$ Be reaction cross section. The outgoing proton's energy and yield were measured by two sets of four-layered silicon telescopes placed at scattering angles of 45 and 30 degrees.

The thick target analysis method was applied to obtain the cross sections. The measured cross sections were 0.89 ± 0.18 (0.76 \pm 0.24) mb at $\theta_{\text{lab}} = 45$ (30)° at $E_{c.m.} = 0.35$ MeV and 0.17 ± 0.13 (0.21 \pm 0.20) mb at $\theta_{\text{lab}} = 45$ (30)° at $E_{c.m.} = 0.12$ MeV. The impact of the measured cross sections on the CLP was found to be small. The cross section was obtained at the lowest energy of $E_{c.m.} = 0.12$ MeV with the highest sensitivity compared to the available data [2, 3, 4].

^[1] S. Q. Hou et al., Phys. Rev. C 91, 055802 (2015).

^[2] R. Kavanagh, Nucl. Phys. **18**, 492-501 (1960).

^[3] C. Angulo *et al.*, ApJ **630**, L105 (2005).

^[4] N. Rijal et al., PRL 122, 182701 (2019).