博士論文公聴会の公示 (物理学専攻)

学位申請者:Nurhafiza Mohamad Nor (物理学専攻)

論文題目: Nuclear structures in neutron-rich nuclei ¹⁴¹Xe and ¹⁴³Xe investigated by β - γ spectroscopy β - γ 核分光法による中性子過剰な ¹⁴¹Xe と ¹⁴³Xe の原子核構造の研究

日時:2024年3月12日(火)11:00~12:30 場所:理学研究科H棟7階セミナー室(H701号室) 主査:川畑 貴裕 副査:青井考、吉田 斉、吉田 賢市、小田原 厚子

論文要旨:

Study of nuclear shape change from spherical to prolate deformation as increase of neutron and/or proton numbers is one of the most important subjects to understand nuclear interaction. Neutron-rich nuclei with $A \sim 140$ in the north-east transitional mass region beyond the doubly magic nucleus ${}^{132}_{50}$ Sn₈₂ are expected to exhibit various nuclear structures with prolate collectivity and with mixing of small octupole collectivity. In present work, low-lying states in ${}^{141}_{54}$ Xe₈₇ and ${}^{143}_{54}$ Xe₈₉ are investigated by the β decay of ${}^{141}_{53}$ I₈₈ and ${}^{143}_{53}$ I₉₀, respectively.

Experiment was performed as a part of Euroball RIKEN Cluster Array (EURICA) project at RI beam factory (RIBF), RIKEN, based on β - γ spectroscopy. Neutron-rich nuclei were produced by in-flight fission of ²³⁸U beam with energy of 345 MeV/nucleon and intensity of ~5 pnA bombarding on a Be target. Fragments were separated and identified through BigRIPS separator and ZeroDegree spectrometer. Particles and β rays were detected by 5 double-sided silicon-strip detectors and γ rays were detected by EURICA.

Two γ rays and two levels in ¹⁴¹Xe, and 11 γ rays and seven levels in ¹⁴³Xe are newly found by analysis of β - γ and β - γ - γ coincidence data. Decay schemes of the β decays of ¹⁴¹I to ¹⁴¹Xe and of ¹⁴³I to ¹⁴³Xe are constructed for the first time. Branching ratio of the β -delayed-neutron decay of ¹⁴³I to ¹⁴³Xe is newly determined to be 49(6)%.

Based on the β -decay scheme, spins and parities of the ground states in parent isotopes ¹⁴¹I and ¹⁴³I are proposed. From this spin-parity assignment, nuclear shape is supposed to change from spherical shape in nuclei ¹⁴¹I and ¹⁴³I to prolate deformation in neutron-rich Xe isotopes.

Nuclear structure of the low-lying states in ¹⁴¹Xe and ¹⁴³Xe is discussed with comparison of the calculation by large-scale shell-model and with comparison of those in N = 89 isotone ¹⁴⁵₅₆Ba, respectively. From these information, gradual change of nuclear structure in ¹⁴¹Xe and ¹⁴³Xe is suggested to appear with increase of prolate collectivity.